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INTRODUCTION

Stress analysis as applied to mine openings ranges from the 
completely empirical to the completely theoretical. However, It 
Is only through the ultimate utilization of the two methods that 
a guide to the Interpretation of mine stress i^enomenon may be 
obtained. The bridge between the two approaches lies In the 
field of model st\idy. Specifically, this Is an Investigation 
Into determining the feasibility of using multilayered photo- 
elastic materials In models such that a more exact approximation 
of the underground stress distribution around mine openings can 
be made.

The two major objectives In this study for determining the 
feasibility of using multilayered photoelastic material were as 
follows:

1) To develop a material which can be used as a photoelastic 
material and easily cast Into sheets having different lAiyslcal 
constants.

2) To apply this material to a solution of a specific 
problem. That Is the analysis of the stress distribution around 
a circular opening occurring In two layers of material with 
different moduli of elasticity.

The Importance of the stress distribution around mine 
openings can be summed up Into two parts:
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1) The design of the mine opening could lessen the stress 
concentration, thereby, providing a safer environment for the 
mine workers;

2) The amount of materials and supports can be optimized, 
thus increasing the percentage recovery of ore*

Previous Woric
Probably the first investigation into the stresses in a three

dimensional medium came from Boussinesq^^ \  who used the theory
of elasticity to solve for the stress distribution in a semi-
infinite, three dimensional, elastic medium due to the application
of a point load at the boundary* Flamant solved the
Bousslnesq problem, for a point load on a seml-lnflnlte two

(3)dimensional plate* J* H* Mlchell solved the stress distribution
problem In an elastic medium for a finite uniform load on a

(4)seml-lnflnlte plate* Klrsch, Greenspan, Koloff and Englls' 
all used applied elasticity to solve for the stress distribution 
around various shaped openings In seml-lnflnlte plates*

The first use of i^otoelasticity as applied to the stress 
in an earth mass co\ild be attributed to Coker and Filon^-^^
They compared the stresses found in a seml-lnflnlte plate loaded 
with a finite distributed load using photoelasticity, with the 
values of stress found using Mlchell* s mathematical solution*
Bucky and Sinclair^^^ did some of the first work using photo­
elasticity applied directly to mining problems* Ihey used a 
photoelastic method to test the effects of overburden loading on
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mine pillars, and also under the pillars * The load was applied 
to the pillars by a centrifuge in order to simulate the action of 
gravity* They also investigated the effects of tunnels near mine 
pillars on the stress distribution in the pillArs using the photo­
elastic technique*

(7)Panek investigated the stresses induced by horizontal
openings subjected to various states initial of stress* Simple
geometric openings in homogeneous mediums were studied first and
solutions for the stress distribution about these openings were
found by the methods of metheraatical theory of elasticity* These
results were compared with solutions obtained by photoelastic
methods for single and multiple openings* Panek also showed
that if the depth from the earth surface to the top of the opening
in a homogeneous medium is more than twice the long cross-
sectional dimension of the openings, the tangential stress on
the boundary is for practical purposes unaffected by the boundry*
Under conditions of hydrostatic pressure, an opening of circular
cross-section will induce the smallest critical stress* Finally
Panek listed the primary factors governing the magnitiides of the
critical stresses as: (1) the length to width ratio of the cross-
sectional dimensions of the opening; (2) the pillar width; (3) the

(7)ratio of vertical to the lateral initial earth pressure' *' *
/ Q \

Duvall' 'used a i^otoelastic technique and ran tests very 
similar to Penek, although he used both hydrostatic and uni­
directional loading* Duvall's results were in agreement with 
Panek although more specific in nature*
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Van Poollen used the photoelastic analogy to base his 

argument for horizontal supports in mine openings. A photo­

elastic model of rectangular opening in a homogeneous medium 

was constructed and tested. Assuming failure strengths for 

rocks in compression, tension and shear, a failure zone could 

be established. If the rocks in this failure zone are allowed 

to cave, the span of the roof will be increased, thus causing 

a larger area to be in tension and the possibility of more rocks 
failing in tension. If horizontal supports are used. Van 

Poollen contends, that the rock in the failure zone can be 

prevented from caving, thereby keeping the roof span constant.

More recently Moye reported a complete investigation

of Engineering Geology and Rock Mechanics in an underground 

power station in Australia. Photoelasticity was used in con­

junction with stresses measured by the use of flat jack. The 

flatjack method gave a good estimate of the actual stresses 

present. Since the photoelastic method gives the stresses due 

only to overbum weight, the tectonic or residual stresses could 

be calculated from the difference in stresses found by these 

two methods. Moye used gelatin as his photoelastic medium in

order to simulate overburden weight.
( 11)

(9)

E. L. Potts examined the stress distribution around

single underground roadways of different shapes using photo-
(8)elasticity. His results again agreed with Duvall and

Panek Another attack was used to solve the problem of the
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stress distribution found by boring holes in a coal pillar* The 
coal seam and adjacent rock were represented by two photoelastic 
materials with different physical constants. These physical con­
stants were arranged such that the ratio of the modulus of 
elasticity of adjacent rock to the coal seam was the same as 
the ratio of the modulus of elasticity of two photoelastic materials. 
The final result was the determination of the number of holes, 
their spacing from each other and the pillar edge, without 
materially reducing the strength of the pillar.

(12)Along with Potts* work, J. Dixon' ran a similar series
of tests using rectangular auger openings instead of circular
openings. This was done because the results of the previous

(11)investigations by Potts indicated that the coal tensile 
strength was less than the value foimd by investigation and the 
coal would fail at the top and bottom of the opening enlarging 
the opening into a rectangular shape.

J us tif ication of Photoelastic Model Studies
In most of the i^otoelastic literature referenced in this 

stiady, the exception being the work done by Potts and Dixon, two 
very basic assumptions had to be made. One, that the earth 
surrounding the opening is homogeneous. Two, that the medium 
can be considered isotropic (that is, the constants describing the 
physical behavior of the medium are constant in all directions 
and do not vary from point to point.) Various investigators 
(7, 8, 10,12 , 13, 14) have attempted to justify this assumption
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with the general consensus being that although the earth is far 
from the homogeneous and isotropic medium assumed, the application 
of photoelastic model study to mine problems does indicate:

1) A comparison of stress between one structure and 
another

2) A method of attack by which mine stress problems 
can be investigated

3) The regions of probable distress
4) A better understanding of which physical tests of 

rock w o u M  give the most information to the f^ysical 
properties ^ i c h  co\ild lead to the ultimate solution.

With the assumption that all the earth is made of a layered 
homogeneous materials, instead of being entirely homogeneous, 
a closer approximation of the actual stress distribution arotmd 
openings in the earth can be made.
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PHOTOEIASTIC MODEL MATERIAL

The basic requirements of the material used in this research 
can be stated briefly as follows: It must be transparent, 
birefringent, and elastic. It must be relatively easy to 
manufacture, machine, and handle, and have a high stress optic 
sensitivity. It also must be easily cast into layers with dif­
ferent modulus of elasticity.

Gelatin
A survey of the existing literature was conducted in an 

attempt to find a photoelastic material which would satisfy 
these requirements. Gelatin meets most of the requirements 
listed. It was tried in the initial studies of this research. 
However, gelatin has a very detimental time-edge effect, poor 
machinability, high strain fringe value, i.e., strain necessary 
to produce one fringe in a model of unit thickness, and finally 
is very difficult to cast into layers which have different moduli 
of elasticity. However, gelatin as a photoelastic material, 
is extremely sensitive to stress, i.e., a very small stress 
(.0725 psi/fringe/in for shear stress in thickness) will produce 
one fringe. This enables one to use gelatin in studies involving 
body forces. Several early investigators (16, 17» 18, I9, 20, 21,
22, 231 24) \ised gelatin in photoelastic studies for the stress 
distribution around dams, tunnels, aiid foundations. In this 
study, the fact that gelatin was extremely hard to handle and 
the detrimental time effect overbalanced its advantage of sensitivity.
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Epoxy Resin
The survey of existing literature also pointed up the 

increased use of epoxy resins as a photoelastic materials.
Several investigators had made use of a clear epoxy resin in 
photoelasticity and reported good results, (24, 251 26, 27* 28). 
From these reports, Araldite 502, a liquid organic resin was 
chosen as the photoelastic material. This resin when combined 
with a suitable hardener and other solvents will cure to a 
solid material with different physical and optical properties.

History and Structure of Epoxy Resins
Epoxy resins are the newest of the major industrial plastics. 

They were first synthesized by Pierre Castan in Switzerland and 
S.O. Greenlee in the United States late in the 1930*s. ' ^'Epoxy 
resins are thermosetting materials, that is, when converted by a 
curing agent, the resins become hard in fusible systems. The 
system may be visualized as a network crosslinked in all three 
dimensions. In a plane it might appear as shown. The epoxy 
molecules are represented diagramatically by a horizontal line 
and the crosslinking between the system of molecules is shown 
by the vertical line.
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Thus the movement of a molecule in any direction is opposed by the 
crosslinking arrangement* This crosslinking gives the epoxy system 
much more strength than the typical thermoplastic plastic which does 
not have crosslinking.

The thermosetting epoxy resins possess a number of unusually 
valuable properties which could be applied to use in the formation 
of adhesives, sealing liquids, cold solders, casting and coating.
The more important of these properties are;

1) Versatility: Numerous curing agents for the epoxies 
are available, and the epoxies could be used with a 
wide variety of modifiers. Therefore, the properties 
of the cured epoxy-resin system can be designed to meet 
widely different specifications.

2) Good handling characteristics; Most epoxy systems can be 
used and worked at room temperature. Before the curing 
agent is mixed into the system, the resins have indefinite 
shelf life.

3) High adhesive properties; Epoxy resins have high adhesive 
strengths arising from the polarity of the atomic groups 
present in the initial resin chain, and in the cured system, 
The polarity of these groups serves to create electro­
magnetic bonding forces between the epoxy molecule and the 

adjacent surface.

Casting the Epoxy Resin

Since Epoxy Resin was first developed as an adhesive, a 
method had to be devised which would allow the epoxy to be cast 
into a sheet of uniform thickness and be separated from the mold 
itself, without causing any damage to the sheet or mold. After
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considerable research into different mold release agents, it 

was found that lucite plastic could be used without any release 

agents whatsoever. Figure No. 1 on page 11 shows the actual 

mold. This mold consisted of two flat plates of Lucite separated 

by brass ball bearings used as spacers. The brass ball bearing 

spacers give three point support. The final thickness of the 

solid sheet did not vary over .005 inches. Tape was used around 

the sides and bottom of the mold to prevent leakage of the liquid 

resin.

The resin had to be thoroughly stirred before pouring into 

the mold. If it was not thoroughly mixed, distortion of the 

light due to the inhomogeneity of the final material occurred 

and gave a distorted fringe pattern.

Chemical Composition of the Cured Resin

Since the Epoxy Resin Araldite 502 is liquid at room 

temperature, a hardening material was used to obtain a solidified 

product. In this study, a chemical liquid hardener manufactured 

by the Ciba Chemical Company, Fairlawn, New Jersey, under the 

trade name of **951** was used. As previously stated the amount 

of hardening material or hardener used with the liquid resin 

determines the physical and optical properties obtained in the 

final product.

A series of tests were run to determine the best hardener 

to resin ratio which would yield the desired physical requirements. 

It was found, however, that if Araldite 502 and hardener 951 were
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Model Casting Apparatus
FIGURE 1
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used exclusively, initial or ''locked in" stresses were obtained 

in the cured product. Annealing the cured product or varying 

the curing temperature did not relieve the "locked in" stresses 

and other methods had to be found. After trying various chemical 

plasticisers and organic solvents, two chemicals were found 

that if used in the proper proportions with the resin and 

hardener they would relieve the "lock-in" stress and provide a 

stress-free photoelastic material. These chemicals were cyclo- 

hexanol and Dibuty-phthalate. Another series of tests were run 

to determine what proportions of the chemicals constituents 

would give the desired physical properties without any residual 

stresses appearing in the final product.

Table 1 on page 13 gives the results of the two series of 

tests in regard to what proportions were used and how this 

affected the properties of the cured resin.
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TABLE NO. 1

Experimental Results of Modulus of Elasticity and 
Material Fringe Value for Composition of Epoxy Resin

Run
No. 502 951 Cyclo.

%
Dibutyl

E
psi

f
psi Comments

1 .8 8 . 2 2 0 . 0 4 0 . 0 weak

2 8 6 . 8 3 - 2 30.0 30.0 cracks

3 36.8 3.2 4 0 . 0 20.0 cracks

4 4 6 . 0 4 . 0 10.0 4 0 . 0 cracks

5 4 6 . 0 4 . 0 20.0 30.0- 70 cracks

6 4 6 . 0 4 . 0 30.0 20.0 cracks

7 54.0 4 . 7 1 4 . 3 27.0 creep

8 55.2 4.8 20.0 20.0 weak

9 55.2 4.8 10.0 30.0 weak

10 56.0 6 . 5 23.4 1 4 . 0 300 1.36

11 56.0 6 . 5 23.4 1 4 . 0 3 7 5 1 . 0 4
see
ref.27

12 56.0 6 . 5 23.4 1 4 . 0 325 1.38

1 3 56.0 6 . 5 23.4 1 4 . 0 305 1 . 4 0

14 57.2 4.7 23.7 1 4 . 3 123 1.08
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TABLE NO. 1 (Continued Prom Pagel3 )

Run
No. 5 0 2 951 ^ .Cyclo. Dibuty!

E
- psi

f
psi Comments

15 5 7 . 2 ^.7 23.7 1 4 . 3 150 1 . 1 4

16 6 1 . 5 5.4 33.5 0 18^300 2 4 . 2 0

17 63.0 5.5 2 4 . 6 6.9 361 creep

18 6 4 . 4 5 . 6 15.0 15.0 creep

1 9 6 4 . 4 5 . 6 25.0 7.0 creep

2 0 71.0 5.7 9.5 1 4 . 3 60 1 . 4 0 creep

21 72.0 8.0 0 - 0 2 0 . 0 9 9 3 2 . 4 4
seeref .28

22 73.6 6 . 4 1 0 . 0 1 0 . 0 2 , 0 0 0 creep

2 3 76.0 6 . 2 7.0 11.5 4 0 1.50

24 78.0 6 . 2 7.9 7.9 43 1.50

25 88.0 1 2 . 0 0 . 0 0 . 0 6 8 . 0 0
initial
stresses

26 90.0 1 0 . 0 0 . 0 0 . 0 450000 _____
see
ref. 30

2 7 90.0 1 0 . 0 0 . 0 0 . 0 386000 74.00
see
ref. 26

2 3 91.0 9.0 0 . 0 0 . 0 50.50 initialstresses

2 9 94.0 6 .0 0 . 0

i
0 . 0 _____ .1.29

initial
stresses
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MODEL TESTING OF EPOXY RESINS

The cured epoxy resins differed in Engineering properties 

due to the different chemical constituents* Before the actual 

model tests were run, the Modulus of Elasticity and the Material 

Fringe Value were determined*

Determination of Modulus of Elasticity

The modulus of elasticity of the cured resin was obtained 

by measuring the deflection of a simply supported beam under a 

concentrated load as shown by figure 2 on page 16* The equation 

for deflection of a simply supported beam under a concentrated 

load is given as:

3PL-
48 El where

P “ Concentrated load 

E “ Modulus of elasticity

I = Moment of inertia of the area about the centroidal axis 

L “ Length of span

A  * Deflection of the center of the beam

Solving for E
PL-
48 A I

Table 1 on page 13 gives the results of these tests*
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FIGURE NO. 2

Test for Determination of Modulus of 

Elasticity "E"

16

A  - PL“’
48EI

PL-̂
48 A I
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Determination of Material Fringe Value

Since a variation of hardener and plasticiser caused the 

modulus of elasticity of the material to change, it was necessary 

to test each material to determine the material fringe value (f), 

i*e«, the stress necessary to produce one fringe for inch of 

thickness of the model* These values are tabulated in table 1 

on page 13 for the various proportion of chemicals* In several 

tests, no value of the material fringe value or modulus of 

elasticity was obtained. This was caused by three basic 

difficulties:

1) Strength! When the proportion of 951 hardener to 

Araldite 502 fell below 6% or the ratio of 502 and 

951 to cyclohexanol and dibutylphthalate was less 

the 60-40, the material was extremely weak and 

cracked with the application of concentrated loads 

to its surface. Also, if the cured material was 

exposed to the air for a period exceeding 24 hours, 

tension cracks appeared in the material. This 

phenomenon is shown in figure 3 on page 18 «

2) Creep; If the percent of Dibutyl-phthalate is high 

(approximately 20% by weight), the material exhibits 

creep, i.e., deformation which continues with time 

under a constant stress. It has been reported by 

Durelli, Dally and Riley (5) however, that the final 

deformation (after a long period of time) is pro-
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Cured Resin After Four Days

FIGURE 3

18

'- ’ - J
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portional to the load applied. Since a more resilient 

system was desired, these tests for (f) were discontin­

ued.

3) Initial Stresses: As previously stated, if no

plasticisers or modifiers were used with the 502-951 

system, initial stresses appeared in the cured resin. 

These initial stresses prevented the test for E and 

(f) in some cases.

The actual test for the material fringe value consisted of

a concentrated load on a semi-inf ini te plate as shown in figure 4

on page 20. The value for stress on a vertical line of sysnetry

extending from the point of application can be found from the
(8) 2Pmathematical theory of elasticity, to be <5*̂  - -jj: — —  where 

(T is the radial stresso J.
P is the applied load/unit thickness 

r is the vertical distance from the applied load to 

the point directly below the load at which the stress is desired. 

The actual stress distribution at any point in a semi-infinite

medium due to a vertical concentrated load on its surface is
4 (8) given as •

2P cos 0 
•nr r
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Concentrated Load on a Setni-infInite Plate
FIGURE 4
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FIGURE NO. 5

This distribution can be thought of as circular lines of equal 

radial stress starting from the point of application as shown in 

figure 5.

In photoelasticity, the fringe order represents the dif­

ference between the principal stress ( higher the

fringe order the larger the difference between principal stresses. 

This relation between fringe order and difference in principal 

stress should be linear for an elastic, birefringent material.

Figure 4 on page 20 shows the fringe distribution due to a con­

centrated load on a sheet of cured resin.

As noted in this picture, the similarity between the photo­

elastic fringe distribution and the exact mathematical solution 

indicates that the material is elastic and has a fringe distribution 

which varies with the actual stress in the model. Since on a radial 

element, the compressive stress <5"̂  is the only stress present, 

the difference in principal stress is the stress Therefore:

‘ ^2 “ t
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where n - fringe order

f - material fringe value Ib/in for in/fringe 

t “ thickness of the material

therefore:
^  nf 2P 

" t " r

(For all points falling on the vertical line thru the concentrated 

load.)

A plot was made between Log (n) and log (r) and a straight line 

was obtained. Figure 6 on page 23 shows an example of this. The 

values for the stress and fringe order at two points 

(r^, n^) were taken from this graph. The points and

^^2’ ^2^ were found from the figure 4 on page 20.

Since . ^ and ^  2P

n f
and 1

t and

n f

2

1
t t

solving for the material fringe value

^r -
t (■ -)

"l - "2

All the material fringe values were found by this method approximately 

24 hours after the resin had cured. The material fringe value 

was also found just prior to a test on models. This was done 

because of the change in this value with time.
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FIGURE NO.6

Graph of Distance from Load vs. Fringe Order

Fringe Order (n)
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Loading Device

Figure 7 on page 25 shows the loading arrangement for 

applying a distributed load to a sheet of model material. A 

very stiff bar of metal was used to apply the distributed load 

to the top surface of the model. Since friction was set up 

between the bar and the model, the influence of this friction 

on the stress-fringe distribution was checked. At any point 

over one inch from the top surface, the stress had distributed 

itself according to St. Venant*s principal and was not affected 

by the friction and the elastic constraint at the surface.

Loads were applied to the metal bar by means of a lever arm 

system. The load was applied to a small metal cylinder in the 

center of the bar.

Machining the Model

Because smooth circular holes were used as the openings 

in the models, an effective device had to be used to machine 

the cured resin. Figure 8 on page 26 shows the router which 

was used in this study. The cured material could easily be 

machined by this router and the router left no machine stresses. 

Any other suitable machine shop high speed cutting devices 

could be used in shaping the material without tearing.

The Optical Setup
Figure 9 on page 27 shows the polariscope used in this 

study. It is a standard bench polariscope. A white background 

was used throughout the study because of the superior contrast 

in the final photographs.
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FIGURE 7 
Loading Device
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Model Machining Apparatus

Figure 8
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Polariscope
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TEST OF A CIRCUIAR OPENING IN A HOMOGENEOUS MEDIUM

In order to check the accuracy of the calibration procedure and 
the loading device, a test was run using a circular opening in a 
homogeneous semi-infinite sheet subjected to a \miformly distributed 
load on its boundry. An exact methematical solution is available

/g\
for this case' Figure 10 on page 29 shows a plate subjected 
to a uniform compression of magnitude S in the x direction. The 
stress distribution shown in the plate is given by

Cr = - I  - I  ^  ^  > cos 2 0

= - I  (1 + ^ )  - I  (1 + % - )
r^

cos 2 0

Tr- = - I  ^  ^  2 0
0 r r

where r is the radial distance from the center of the hole 
S is the applied load 
a is the radius of the hole 
0 is the angle between r and the fixed axis x 

^r is the radial nonnal stress
^9 is the normal stress in the circumferential direction 
r^is the shearing stress associated with the point r,0 

The stress at the edge of the hole was desired, so (r) was set 
equal to (a) and
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A Plate Submitted to a Uniform Compressive 
Stress (s) in the X-Direction

F IG U R E  N O . 10

S(psl)
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“ ^rO ' ®

and
O - S - 2S cos 20

The stress at 0 - O, gives

^ O  - -S + 2S (+1) - +S

and the stress at O J L  » 3^2 2

CTg -S + 2S (-1) - -3S

This exact solution states that the top and bottom of a circular

hole subjected to a uniformly distributed compressive load

the stress should be tensile and equal to the applied stress. At

the two sides of the hole, the stress should be three times the

actual compressive stress applied to the system.

In terms of the actual applied stress, the stress Concentration

factor at the two sides of the hole would be 3 and the S.C.F. at

the top and bottom would be 1. These stiess concentration factors

were compared against the ones found using the Epoxy Resin Material.

Figure 11 on page 31 shows the fringe distribution obtained

from a test of a uniform applied compressive stress to a circular

hole in the cured resin. This stress distribution compares very
(9)closely with Frocht*s picture of a similar case . The 

material fringe value of the material used was found to be
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Fringe Distribution Around a Circular 
Hole in a Homogeneous Medium

FIGURE 11

31
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f " 1.25 lb/in for in/fringe order 
the model fringe value is given as:

F - l

where t is the thickness 

Therefore

F - 2.55 Ib/ln^/frlnge

the fringe order found at the top and bottom of the circular hole 

of figure 11 on page 31 was n - 3.75. The stress at these 

points were calculated to be:

(Tj - (T2 - nF

CTi - CT2 = (3.75X2.55) - 9.56 Ib/in

the applied stress S was equal to 9.22 psi the percentage 

difference found by comparing the theoretical stress to actual 

stress

9.56 - 9.22
9.22

X 100 - 3.7%

The theoretical stress concentration factor at the sides 

of a circular hole in a semi-infinite plate is given as 3. The 

S.C.F. found at the side points A and B by the test was

(T ^  - 9.75 (2.55) - 24.8 Ib/in A

g'g - 9.75 (2.55) - 24.8 Ib/in
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the S.C.F. is found by dividing the stress at points a and b by 

the applied stress

S.C.F. 24.8
9.22 2.7

Since the model was not an infinite plate, the S.C.F.

decreases accordingly. Figure 12 on page 34 shows the theoretical
(32)effect of the finite dimension on the S.C.F. at the hole .

For the ratio of hole diameter to width of the sheet of 1.46, 

the theoretical S.C.F. from figure 12 was determined as 2.47.

This gives a percentage deviation of:

2.7 - 2.47 
2.47 X 100 - 9.4%

Another check was performed on a circular hole in a semi< 

infinite homogeneous medium. In this test, the ratio of the 

hole diameter to the total width of the sheet was changed to 

0.97, all other dimensions and loads were duplications of the 

first test. The results of this test are given in table 2 on 

page 41,
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Oraph of Stress Concentration Factor vs, d/'D Ratio
PIOtJRE NO. 12

to- if

E J i
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TEST OF A CIRCULAR OPENING IN A TWO LAYERED MEDIUM MODEL PREPARATION 

Model Preparation

The specific test run in this study consisted of a circular 

hole in a two layered medium. The hole was placed as shown in 

figure 13 on page 38. Both layers consisted of cured epoxy 

resin and each was considered homogeneous. One layer was cast 

in the molding device and allowed to cure. After curing, the 

top of the sheet was machined to a smooth flat surface. The 

mold was reassembled with clamps on the Lucite sheets to prevent 

leakage of the liquid epoxy of the second layer onto the first 

solidified layer. The second layer was poured directly on the 

first layer and allowed to solidify. The two layers differed 

only in their chemical compositions such that after curing, 

the layers would have different physical characteristics. In 

this test case, the two layers differed in their modulus of 

Elasticity by a factor of approximately 2.

Calibration

Both layers were calibrated for their material fringe value 

just before testing. The procedure was the same as previously 

stated in the section on calibration. Layer one, top layer of

figure 13 on page 38 , had a material fringe value of f- 1.335
2Ib/in/frlnge, and a model fringe value of 2.74 Ib/in /fringe.
2Layer two had a material fringe value of 1.09 Ib/in /fringe and

2a model fr inge  value of 2.22 Ib/in . The modulus of elasticity
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for each of the two materials was also measured, immediately after 
testing. A beam was cut from each layer and used for the measure­
ment of the Mcxiulus of elasticity as previously outlined. The

p
values obtained were E = 120 Ib/in for the bottom layer and

p
E = 300 Ib/in for the top layer.

Results of Two Layer Test
Figtire 13 on page 38 shows the fringe distribution obtained 

from the two layer test. The stress at the top and bottom of the 
hole are as fo3JLows:

^top " 2(2.74) - 5.48 psi

= 2-5(2.72) = 5.50 psi

This compares with the theoretical stress at the top and bottom 
of a hole in a homogeneoiis material which was found to be:

<T = 5*46 psi
The stress at the sides of the circular hole in the two layer 
case was calculated at two places. One just above the boundry 
and one just below the boundry as indicated in figure 14 on page 
41. These values were calculated to be:

<r^i = 7 .5 (2.74) = 20.5 psi 
(Tgl = 8 (2.22) = 17 .8  psi

The theoretical value for the stress at a point in a homogeneous 
mediiim exactly on the side of the circular hole point A was 

calculated to be:

3<r = 3 (5.46) = 16 .38 psi
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The S.C.F. for point is

3.75

and for point B is

(S.C.F.) 17.8
5.46 3.25
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Fringe Distribution Around a Circular 
Hole in a Two Layered Medium

Figure 13
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The experimental results found for the S.C.F* at critical 

points around a circular opening in a homogeneous medium mere 

consistently higher than the theoretical. Therefore, the values 

found for the S.C.F. in the tiro layer case mould have to be con­

sidered as being somewhat h i ^ e r  than the theoretical. However, 

the magnitude of increase in the S.C.F. in the two layer case 

c<xiq;>ared to the increase of the S.C.F. in the hcxnogeneous case 

was much higher than could be attributed to errors in the 

loading and calibration procedures. Therefore, the effect of 

the different moduli, of elastLclIy in a two layer would increase 

the S.C.F. around a circular opening, the magnitude depending on 

the difference between the moduli of elasticity of the two 

quantities and their respective Poisson's ratio. A  large dif­

ference of the moduli of elasticity for the material would increase 

the effect of elastic constraint and the S.C.F. factor, provided 

Poisson's ratio for the respective materials were approximately 

the same. In this study, Poisson's ratio for each material was 

approximately the same.

If this two layer test was applied to a mine proto*^rpUt that 

is, an opening between two layers with different moduli of 

elasticity, the sequence of loading must be considered in com­

parison with the sequence in the model construction. Since 

the layers in the earth were deposited over long periods of time.
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the shearing stress or elastic constraint, at the boundry between 

the layers couH either have been increased by tectonic forces or 
decreased due to creep or faults. If the shearing stress between 
the two layers was decreased due to creep, the model should not have 
shear stresses at the boundry between the layers under load. How­
ever, the model was constructed in such a manner that there existed 
a shear stress at the boundry under load. When an opening is placed 
in this model, an additional increase in S.C.F. probably causes 
the S.C.F. to be higher than the mine prototype.

The stress distribution about openings which occur between 
two layers of brittle materials such as limestone and sandstone, 
is especially susceptible to high stress concentrations. If 
the boundry located near points of greatest tensile strees the 
danger of cracking and spalling of the material would be greatly 
increased due to the added effect of elastic constraint on the

S.C.F.
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Table 2 on page 41 suninarizes the results obtained from 

the one layer and two layer tests* This table indicates the 

effect of elastic constraint on the boundry of the layered 

medium increases the stress concentration factor from that 

obtained from test on circular openings in a homogeneous medium* 

This change is greatest very close to the boundry and becomes 

negligible a short distance from the boundry. This is shown by 

the very close agreement between theoretical and experimental 

values at the top and bottom of the hole a relatively great 

distance from the boundry.

Since the stress concentration factor is a very important 

quantity in any brittle material, the fact that it increases 

close to the boundry would indicate a careful choice of openings 

should be made. Any position for the opening close to the point 

of its greatest stress concentration would only increase the 

stress concentration factor. Hence, this would increase the 

danger for cracking or spalling in the material.

In the case of a circular opening in a two layered 

medium, the opening should not be placed with its horizontal 

diameter coinciding with the boundry. Any other position would 

not increase the stress concentration factor above the critical 

one which is along the horizontal diameter of the hole.
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If these resrQ.ts are applied directly to a mine stress problem, 
a possible source of discrepency could come from the fact that 
because the beds of the earth are layed down over long periods 
of time the shear stresses along the boundry of the two layers 
is probably dissipated. Therefore, the stress concentration 
factor at the hole would be decreased from the case where the 
load is applied directly to layers which were cured in an 
unstressed state.

The close agreement between theoretical and experimental 
values obtained in this study, indicate that, cured epoxy 
resin material can be effectively used as a photoelastic material. 
Since this material can easily be case into layers with dissimilar 
moduli of elasticity, the actual condition in the earth could 
be more closely approximated. Also, it has been shown possible 
to analyze the stress around openings close to the boundry of 
two metals with different physical properties.
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Location of Points for which the S.C.F. was Determined
PI (TORE NO. 14

S ( p 3 l )

TABLE NO. 2

Results of S.C.F. at Critical Points

TEST POINT THEORETICAL
S.C.P.

EXPERIMENTAL
S.C.P.

homogj&neouB (l) A,B .9 1.05

d/t) = .146 C,D 2,47 2 . 7 0

homogenftou a (2) A,B .96 1.02

d/‘D =.097 C.D 2,80 3.00

Two layer C* ,D' 3.75

d “D = .135 C ’’,D" 3.25

A 1.00

B 1.00
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